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Abstract. A general algebraic formalism for the study of local  ont textual hidden variable 
theories is presented. Contextuality, which is a property of all consistent hidden variable 
theories, is interpreted as a manifestation of the inadequacy of the algebra of quantum 
observables to completely describe physical systems. The Bell inequalities obstruction to 
locality is overwme by the use of a generalized probability theory. 

1. Introduction 

The aim of this paper is to investigate, in the framework of the algebraic approach, 
general properties of local hidden variable theories. 

Under the notion of local hidden variable (LHV) theory we understand a theory 
based on the following concepts: 

Indioidual system description. The theory describes individual physical systems. The 
description given by the theory is supposed to be finer than the quantum mechanical 
one. 

Causality. In the framework of the theory a subquantum space fl is defined. 
Elements of (subquantum states) correspond to complete states of a given physical 
system. If a subquantum state w of the system is known, then the outcome of any 
quantum measurement performed on it is determined. 

Locality. The result of a quantum measurement S performed on the system in a 
given subquantum state U J G ~  does not depend on whether some other quantum 
measurement T, which does not interact with S, is performed jointly. 

The lack-of-knowledge interpretation of quantum probabilities. The fact that quantum 
theory cannot give (except in some special cases) predictions for individual systems 
but only for statistical assemblies is interpreted as a consequence of the incompleteness 
of this theory. In accordance with this, quantum states (statistical operators in the 
standard quantum mechanical scheme) are understood as entities carrying information 
about a lack of knowledge of subquantum states. More precisely, each quantum state 
p becomes a ‘probability measure’ pp on n such that probabilities of quantum events 
in the state p are equal to probabilities, with respect to pp, of appropriate subquantum 
counterparts. 

The principal question about the logical possibility of such a structure can be 
answered affirmatively. On the other hand, in constructing an LHV theory, we do not 
have absolute freedom: it is known that every LHV theory must satisfy specific require- 
ments, related to obstructions given by the so-called ‘no go’ statements. 
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Generally speaking, statements of this kind tell us that under certain external 
assumptions a hidden variable theory is not possible. Essentially, there are two kinds 
of ‘no go’ statements. 

First of all, investigations of von Neumann [27], Gleason [19], Bell [4] and others 
(see [SI) show that the concept of a dispersion-free state (subquantum state) is 
incompatible with the structure of the lattice of quantum events (or with the algebra 
of quantum observables). From the logical viewpoint, these results are not at all related 
to the condition of subquantum locality nor to the ignorance interpretation of quantum 
states. 

Problems of this kind can be overcome [2 ,4,5,8,9,  14,16,21,35] by allowing the 
so-called contextual theories [321. Their common and characteristic property is that 
the value of a given observable in a given subquantum state also depends on a 
measurement arrangement (context). As a rule, in contextual theories one and the 
same quantum observable, in the same subquantum state, possesses different values 
in different contexts. 

The second obstruction comes from Bell’s inequalities [3]. The violation of these 
inequalities by certain correlated two-particle quantum mechanical states implies that 
an LHV theory cannot reproduce the corresponding joint probabilities along the lines 
of classical (=Kolmogorovian) statistics. To put it another way, a hidden variable 
theory based on classical statistics and statistically compatible with quantum mechanics 
is necessarily (subquantally) non-local. 

It is worth noting that, in accordance with the results of Summers and Werner 
[33,34], essentially the same situation also holds in algebraic quantum field theory. 

However, classical statistics is not the only way to describe lack-of-knowledge 
situations. Moreover, in the framework of suitable generalized statistics, a unification 
of quantum theory, locality and causality becomes possible [Is, 17,22,23,28,30]. 

In summary, any local causal theory, statistically compatible with quantum 
mechanics, must be contextual and must be based on non-Kolmogorovian statistics. 

Through this paper we shall deal with a generalized ‘quantum structure’, specified 
by a C*-algebra Z of ‘quantum observables’ together with a collection of allowed 
‘measurement contexts’. We shall distinguish two types of contexts: simple and com- 
posite. By definition, simple contexts correspond to single (one-particle) measurement 
situations, while composite contexts correspond to measurements composed of two or 
more mutually independent single measurements. We shall suppose that each simple 
context is realized as a commutative C*-subalgebra of Z, consisting of observables 
measurable in this context. Let Tdenote the family of such commutative C*-subalgebras 
of Z, On the other hand, each composite context is completely determined by simple 
contexts from which it is composed. In  this sense we shall identify composite contexts 
with certain subsets of T. Let T be the family of all contexts. We shall assume that the 
following properties hold: 

(i) The family T generates Z. This is a condition of minimality for Z, otherwise 
we could pass to a smaller algebra generated by T. 

(ii) The family T is complete, in the sense that A E ?  and B !Z A implies B E  f. This 
assumption is natural because of the above-mentioned interpretation of composite 
contexts. 

(iii) For each A = { A , , .  . . , A , ) E ~  the map qPa:A,O. .  .OA.+Z defined by 
q,,(&O.. .O&) = 6,. . .La is an injective *-homomorphism. In other words, simple 
contexts A,,  , , , , A. forming a composite one are mutually compatible and uncorre- 
lated. 
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It is clear that this abstract scheme includes, as a special case, all standard 
quantum-mechanical examples of distant measurements. 

In this study, LHV theories are analysed in the framework of the contextual 
extensions approach [141. The basic idea for this is an interpretation of contextuality 
as a manifestation of the inadequacy of the algebra L of quantum observables to 
completely describe the system. Following this idea we have to consider some finer 
algebra L’ (of ‘right’ ohservables) equipped with a ‘forgetting’ epimorphism Q : L’+L, 
so that L can be obtained by factorizing L’ through the ideal kef(+). 

In section 2 we introduce a subclass of ‘local contextual hidden variables (LCHV) 

extensions’. These extensions are relevant for the study of LHV theories. They will be 
characterized by four extemal assumptions. 

The first one is ‘locality’, which leads to objects called local contextual (LC) 
extensions. After defining these entities we construct the ‘maximal’ LC extension. The 
theoretical relevance of this object lies in its universality, as well as in the fact that it 
satisfies another three assumptions, which complete the notion of LCHV extension and 
which are closely related to the ignorance interpretation of quantum states. 

In section 2 we shall also introduce, for an arbitrary LCHV extension, the ‘subquan- 
tum space’ Cl and a notion of the value of a quantum observable a* E I; in a subquantum 
state o e n  relative to a context A E f. 

I’he statisticai foundation of quantum states, Srom the LCHV viewpoint, is a theme 
of section 3. Such a foundation becomes possible in the framework of ‘contextual 
statistics’, the base of which is a family 9 of those subsets of the subquantum space 
Cl which are interpretable as ‘quantally actualizable’ subquantum events. The family 
@ is not Boolean u-algebra. As we shall see, each quantum state p gives rise to a 
‘probability measure’ pp:  @ + [0, 13 reproducing all quantum probabilities. 

- 

We then introduce, in a natural manner, a ‘quantum interpreter’ map 

6: {quantally actualizable subquantum events} + {quantum events} 

which to a given subquantum event from @ attaches the corresponding quantum 
counterpart (a projector in the Hilbert space of quantum states). This map contains 
all the information about the measures pLp. 

domains. In particular, we shall show that, under some external assumptions, 6 can 
he (uniquely) extended to an operator-valued map defined on the u-class 0 (see 
[22,23]) generated by @. If such extended 9 is positiue then each quantum state can 
be naturally realized as a probability measure on Cl (that is, pp are extendable to 
probability measures on 0). Only in this case is the statistical foundation of quantum 

However, in the general case, the extended 9 is not positive. In other words, the 
‘contextual statistics’ mentioned cannot always be incorporated in the approach of 
U-classes. 

Finally, we shall briefly discuss the ‘classical case’, when a quantum state is reducible 
to an ordinary (=Kolmogorovian) probability measure on n. Of course, due to Bell’s 
inequalities. not all quantum states admit such reduction. We shall find a simple 
criterion characterizing states for which this is possible. 

In section 4 some examples are considered, and a number of critical remarks are 
made. 

We shall deal with unital C*-algebras and unital homomorphisms. As a classical 
textbook on C*-algebras, we refer to [13]. 

v e  sha!! a!se axa!j.se the possibi!l!y of ex!c-dizg .9 fro- B to more ‘coE-p!dc’ 

states esrentia!!y the same as that proposed by Pitowsky and Gudder [22; 23; 2xi 3nj: 
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2. LCHV extensions 

As already mentioned, to represent the 'quantum world' we take a pair (Z, T) consisting 
of a C*-algebra 1 and a family TAof commutative C*-subalgebras of X (simple 
contexts), together with a collection T (composite contexts) of subsets of T, such that 
properties (i)-(iii) in section 1 hold. 

For each A = {A,,  . . . , A n ]  ET we shall denote by dom(A) the commutative C*- 
subalgebra of X generated by A, ,  . . . , A n ,  by iA:dom(A)+Z the inclusion map and 
by X(A) the spectrum of dom(A). According to property (iii), the spectrum X ( A )  of 
dom(A) is naturally homeomorphic to X(A,) x . .  . x X(A.). 

Now, we pass to the suhquantum structure. Let us recall [14] that a contextual 
extension of (Z, T) is a triplet (E', 4, ( la;  A ET)) where 

(i) X' is a C*-algebra; 

(ii) +: X'+Z is a *-homomorphism; 
(iii) iA: A+X' are *-homomorphisms such that +iA= iA;  

(iv) X' is generated by subalgebras ( lA(A); A E TI. 

In  this paper we shall restrict ourselves to extensions, local in the sense of the 

(2.1) 

ioiiowing definition. 

Definition 2.1. Contextual extension (Y, 4, { la;  AET}) is called local, iff 

LA(6)1,(6) = l,(b^)lA(6) (2.2) 
for each A, E E T  such that [A, E )  E f, and each 6 E A and 6 E E. 

If (X',4, [la; !ET)) is a local' contextual (LC) extension then for each A = 
( A , ,  . . . , A,,) ET the maps iA,, . . . , are uniquely extendable to a *-homomorphism 
lA: dom(A)+X'. It is easy to see that 

4iA = iA (2.3) 

for each A E f. 

'minimal' extension. We pass on  to the construction of the 'maximal' extension. 

A) and the following relations: 

A trivial example of an LC extension is the triplet &id, ( i A ;  ACT)). This is the 

Let Lc(& T) be the C*-algebra generated by the set of elements [(t, A); A ET, 6 E 

(1, A) = 1 

( . 6 + ~ 6 , ~ )  = a ( 6 , ~ ) + ~ ( 6 , ~ )  % P E C  

(6, A)(& A) = (66, A) 
(6, A)* = (&*, A) 

(6, A)(6, E )  = (6, E)( ; ,  A) 

(2.4) 

if (A, B )  E i. 
For each A E ~  we can deiine a *.inomomorphism ; , : c i o m ( ~ j + i c ( ~ , , ~ )  'IY iiie 

formula 

C A ( & .  . .in) = (Ci,, A,) .  . . ( h e ,  A.) (2.5) 

where A = [A,,  . . . , A,,}, The algebra Lc(Z,  T) possesses the following universal 
property. 
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Proposition 2.1. Let X' be a C*-algebra and { A A  : A + Z'; A ET} a family of homomorph- 
isms such that 

~ , ( n ^ ) ~ , ( b ^ )  = A ~ ( ~ ^ ) A ~ ( c )  (2.6) 

(i) There exists the unique *-homomorphism A :  Lc(X,  T) + X' such that A t A  = AA 

(ii) If subalgebras {AA(A); AET} generate Z' then A is surjective. 

whenever {A, E )  E f. 

for each A ET. 

Proof: The existence and the uniqueness of A directly follow from the definition of 
Lc(X,T). As a *-homomorphism between C*-algebras, A has the closed range R(A) .  
If {AA(A): ACT} generate X' then R ( A )  is dense in X', which is possible only if 
R(A)  = z'. 0 

Let us apply this proposition to the following situation: X'= Z, AA = ia .  We conclude 
that there exists the unique *-homomorphism + : Lc(Z,  T) + Z such that &A = iA ,  for 
each A E T. (Hence, +CA = iA holds for each A E f.) 

Progosition 2.2. (i)  The triplet (Lc(X; T): & { C A ;  A ET!) is an LC extension of (X: T). 
(ii) If (Z', 4, { tA;  A ET}) is an LC extension, then there exists the unique 

*-homomorphism A : Lc(X, T) + X' such that 

L~ = ,itA for each A E f. (2.7) 

Proof: Property (i)  follows directly from definition 2.1. Let (Z', +, { tA;  AEA))  be an 
arbitrary LC extension. According to proposition 2.1, there exists the unique 
*-homomorphism A:Lc(Z,T)+X' such that (2.7) holds for each AET. If 
A = { A  ,,..., A.)eT then  LA(^, ... ( i . ) = ~ ~ , ( a ~ ) . . .  tA.(n*")=AtA,(nL,)  . . .  A;A"((~*.)= 
AtA(a^, . . . &), for each 2, E A , ,  . . . , 2. E A.. By the use of linearity and continuity we 
conclude that (2.7) holds. 0 

3.7.  . L ^ I I  :___-_I .I.-"- ---A:&:-.." __.L:^L .._:,I ~ - "  *L- ,",.L ,..-I- ..̂ ..., wc snaii nuw ~ILL~UUULZ LIIISL- cu~iuiiiuii~ wiiicii W I L ~  F L ~ D Y ~ G  LILS iarx~-ur-~.rruwirug= 

interpretation of quantum states. From this moment, we shall assume that X is faithfully 
represented in a Hilbert space H of 'quantum states'. Let (X', 6, { L ~ ;  AET)) be an LC 
extension. 

Property (a). Let com(X') be the ideal in Z' generated by commutators. Then, 
1 com(Y). Equivalently, the set of characters (non-trivial multiplicative linear 
(necessarily Hermitian, or *) functionals) of Z' is non-void. 

Let us suppose that (a) holds and denote by the set of characters of X'. Endowed 
with a *-weak topology, 0 is compact. The map v : Z ' +  C(n) defined by o ( a ' ) ( o )  = 
~ ( a ' ) ,  where C(n) is the C*-algebra of complex continuous functions on a, is 
surjective and ker(v) = com(2'). Consequently, C(0) is naturally isomorphic to 
X'/com(X'). 

The following lemma gives a characterization of elements of n. 

Lemma 2.3. A functional o :X'+ C belongs to 0 if and only i f  
(i) It is a state; 
(ii) Its dispersion on each element ta(a^), where 6 = a^+ E A and A ET, is equal to 

zero. 
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Proof: It is easy to see that each character of Y satisfies (i) and (ii). Let us suppose 
that w : Z’+ C satisfies (i) and (ii). For each b E Y, A E T  and a  ̂= a^’€ A one then has 

~ w ( b [ C ~ ( a ^ ) - ~ ( l ~ ( a ^ ) ) 1 ] ) ~ ~ ~ ~ ( b b * ) ~ [ ( l ~ ( a ^ ) - w ( c ~ ( ~ ) ) l ) ~ ] = 0 .  

In other words, 

w(bLA(a^))  = w ( b ) u ( c A ( d ) ) .  (2.8) 
From this we conclude that 

w(ba’)  = w ( b ) w ( a ’ )  (2.9) 
holds for each b E E’ and 

a’E{the *-algebra generated by elements la(;) ,  where A E T  and ;EA.} 

Finally, by the use of continuity of w, and property (2.1; iv) we conclude that (2.9) 
holds for each b E Z’ and a’€ Y. Thus w E 0. 0 

We can think of characters w E 0 as of ‘subquantum states’. For each A E  f, a  ̂E dom(A) 
and w E 0 the number w ( c A ( d ) )  can be interpreted as the value of 2 in the subquantum 
state w,  relative to the context A. 

We pass to the second condition. For each A E ?  let FA: dom(A)+ C(n) be a 
*-homomorphism defined by FA=wcA. Let us denote by l(n) the lineal in C ( 0 )  
generated by subalgebras FA(dom( A)). 

Property (b): There exists a linear map j:  l ( n ) + Y s u c h  that 

jFA = cA for each A E ?. (2.10) 

Let us suppose that (b) holds. 

Lemma 2.4. The map j is Hermitian and determined uniquely by (2.10). For each 
f~ l(0) one has r j ( f )  =f: 

Proof: This is a direct consequence of definitions of j, FA’s and the space /(a). 

Lemma 2.5. For each A E ? the map FA: dom(A) + C(0) is injective. 

Proof: According to property (2.1; iii) one has +jFa(2) = a  ̂ for each A E ?  and 

0 

dom(A), which implies the injectivity. 0 

This lemma can be reformulated as follows: for each A E f let vA : 0 + X(A) be a map 
defined by 

T A ( W ) = W C A .  (2.11) 

This map is continuous, according to definition of topology in n. Lemma 2.5 is 
equivalent to surjectivity of all r A ’ s .  

For each finite set F c T ,  let /,(a)= /(a) be the sublineal in [(a) generated by 
subalgebras {F,(dom(A)); A c  F } .  Our last condition will be the following. 

Property ( c ) .  For each finite set F c T ,  the composition bjF: l F ( 0 ) + Z  is continuous. 
Here,jF=(jlIF(0)).  

The following lemma gives a simple sufficient condition for property (c). 
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Lemma 2.6. Let us suppose that (X', 6, { c A ;  A ET}) satisfies properties (a) and (b). If 
the spaces /,=(a) and jlF(n) are closed, then the maps j F : l F ( 0 ) + X '  are continuous 
and, consequently, property (c) holds. 

Proox If /,(a) is closed in C(n) then, according to the continuity of TI, the space 
 TI-'(/^(^)) is closed in X'. Because of lemma 2.4, the formula 

I"( = TI( @ in' - j,j4i)) 

defines a map J : T I - ' ( / , ( ~ ) ) +  l,(n)Oker TI. This map is bijective and continuous. 
According to the closed graphic theorem, f -' is continuous. In particular, the restriction 

U 

Definition 2.2. An LC extension (X', 6, { L ~ ;  A ET)) is called local contextual hidden 
variables (LCHV) extension of (X, T) iff it satisfies properties (a), (b) and (c). 

There exists at least one LCHV extension. 

Proposition 2.7. The triplet (Lc(X,T), $, {tA; ACT)) is an LCHV extension. 

Prooj: Let us first observe that the space of characters of Lc(T, T) can be naturally 
identified with the direct product 

(f-'l/F(n)) = j ,  is continuous. 

n =  n X ( A ) .  
AET 

Indeed, if we choose for each A E T  a character pa E X ( A )  then proposition 2.1 ensures 
the existence of the unique character 9: Lc(X: T) + C which is completely determined 
by compositions pCA E X ( A ) .  

Let us fix o,,En. For a given A = { A , , .  . . ,An}€?  we define LAc C(n) to be the 
lineal consisting of all functions t) of the form 

*(o) = T I A w ) ( f )  (2.12) 

where rA = aA, x . . . x rAa: II + X ( A )  = X ( A J  X .  . . x X ( A . )  is a natural projection, 
f ~ d o m ( A ) a n d f ( (  ) , ._ . ,  nA, (wJ  ,..., ( ))=Oforeach l = s i S q .  It iseasytoseethat 
h e a l s  {LA; A E ?) are mutually linearly independent and that, for each finite set FG T 
the sum /,(II)=XL+iF LA is ciosed in C(II). The formula j(t))*7CA(f), where $ € L A ,  
consistently defines the map j : l(n)+ Lc(X, T) which satisfies j F A  = tA for each A E  T. 
Here, FA = &CA, l(n) = ;yi+ LA and 6: Lc(Z,  T) + C(n) is the facto! projection. It is 
easy to see thatspaces j/&) are closed. According to lemma 2.6, j ,  are continuous 

U and ( L c ( Z ,  T), 6, { C A ;  A ET}) is an LCHV extension. 

3. The statistical foundation of quantum states 

Through this section we shall deal with an arbitrary LCHV extension (Y,  6, (cA; A ET)). 
By definition, states p on 1 that are of the form p(a*)=+r(ba*), where 6 is a statisticai 
operator in H, will be called 'quantum states'. For each quantum state p and a finite 
set F E  T the map p+jF : /,(a) + C is Hermitian and continuous. Let 

dp,F = Ip&l (3.1) 

be the norm of this functional. Evidently, 1 dp,F S 16jF/. 
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Lemma 3.1. For each quantum state p and finite set F c T  there exists a Hermitian 
linear functional p ; :  C(n)+ C such that 

( 9  P ( ; )  = P X F A ( ~ ) )  (3.2) 

for each context A c F and d E dom(A); 

( i i )  one has 

IP;(f)ls dp,F y:"," {lf(w)l} for each fc  C(n). (3.3) 

Proof: For each quantum state p, a finite set F c T and context A c F one has 

P'$ jFFA=P'$LA=PiA.  (3.4) 

Now, according to the Hahn-Banach theorem, p+jF can be extended, without changing 
0 its norm, to a hermitian continuous functional p ; :  C(n) + C. 

For a given A E ~ ,  let us consider a Boolean u-algebra @ A  of sets of the form 
vil(A), where A is an arbitrary Baire set in X(A). 

Speaking 'suhquantally', the family @, consists precisely of those subquantum 
events that are actualizable in the context A. 

The union @ = uA.? @ A  then consists of subquantum events whichare interpretable 
quantally. 

Now we are ready to show that each quantum state p can he realized as a 'probability 
measure' pp on (a, 13). Let us denote by po,A the probability measure on (the Baire 
field of) X(A) induced, via the Riesz theorem, by a state piA:dom(A)+ C. 

Proposition 3.2. For every quantum state p there exists the unique map p p : Q + [ O ,  13 
such that 

pLP(A)  = P ~ , A ( ~ A ( ~ ) )  for each A E f a n d  A c Q A .  (3.5) 

Proof: It is clear that the measure pp is, if it exists, unique. Let us show its existence. 
For each finite set F c T ,  the functional p; introduced in lemma 3.1 naturally induces 
a real-valued measure uF on the Bake u-field B ( n ) .  This measure satisfies 

Y F ( A )  = P , . A ( ~ A ( A ) )  for each context A s  F and (3.6) 

In particular, if A E @ ~ , ~ @ ~ ,  and F is chosen such that A , , A , c  F then 
P ~ , A , ( ~ A , ( A ) )  = / L ~ , A ~ ( ~ A ~ ( A ) ) .  

Therefore, for A E @ A ,  the formula p , ( A )  = p,,A(vA(A)) consistently defines a map 
with the desired properties. 0 

We can think of p '@+[O, 11 as the 'probability measure' on (a, 8 )  measuring the 
lack of knowledge, inherent in p, about subquantum states o E a. 

Proposition 3.2 is not in contradiction with Bell's inequalities: for a state p violating 
these inequalities, we can only conclude that a classical probability measure p :  B ( n ) +  
[0, I], which extends the map pp,  does not exist. 

P.' 
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The fact that pLp is not, in general, extendable to a probability measure on B(R) 
does not deny the possibility of the ignorance interpretation of p. 

Indeed, there is no physical sense in attaching a probability to suhquantum event 
A E B(R)\'@, because such events are not accessible through any quantum measurement. 

According to the ahove-mentioned interpretation of elements of the family F3 as 
subquantum events possessing a quantum meaning, there should exist the correspond- 
ing 'quantum interpreter' map: 

{elements of '@}+ [quantum events}. 

We shall now prove the existence and the uniqueness of such an entity, and 

Let us denote by @ the minimal family of (Baire) sets in 0 which contains '@ such 

(i) If A E $  then 

investigate its main pfoperties. 

that: 

i 2 f A ~ $  

(ii) If 0 is decomposed into a disjoint union 

R =  U A; 
i G N  

and if A( E $ for each i E N, then 

(3.7) 

(U A;) E @  for each SE N. 
ies  

Let us denote by 22 the minimal u-class of (Baire) sets in 0 which contains 8. We 
recall [22,23] that the u-class is a family of sets closed under complementation and 
countable disjoint unions, and which contains 0. 

Similarly, for each finite set F c T let V F  he the union of those @ A  for which A c F, 
let Q F  e Q he the u-class generated by V F  and let Q F  c $ he the minimal family of 
(Baire) sets in R which contains '@, and satisfies (i) aFd (ii) above. It is easy to see 
that Q F c  OF and $E Q. If F, c F2 then (UF ,  c qF2, QF,  c qFi and OF, c 0,. 

Let P ( H )  be the projector lattice in H. 

Proposifion 3.3. (i) There exists one and only one projector-valued map 9 : '@ + P( H )  
such that 

Tr(P^S(N) = p,(N (3.9) 

for each A E Q and each statistical operator 6 in H; 
(ii) For each A E T  and A E  QA one has 

a(A2) = CA[~A(A)I (3.10) 

where c,: B(X(A))+ P ( H )  is the spectral measure associated with the inclusion 
iA:dom(A)+ L(H);  

(iii) For each finite set FcT, the map SF = (9g(QF) can he uniquely extended to 
the Hermitian operator-valued ultraweakly u-additive map SF :CIF + L(H);  

(iv) The images of the maps SE are contained in the hicommutant of Z in L ( H ) ;  
(v) The restrictions of SF on 'QF are projector-valued; 
(vi) If F , c F 2  then (SF2IQFFI )=6~, .  
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Proof: For A E  we define S ( A )  to be equal to CA[T~(A)]. A necessary and sufficient 
condition for the existence of a 'global' map a:'$+ P ( H )  is that C,[T~,(A)] does not 
depend on A. 

According to the same reasoning as in the previous proof, there exists, for each 
statistical operator 6 in H and each finite set F c T, a real-valued measure vF on B ( n )  
such that 

~ F ( A )  =T~[P*CA(TA,(A))I (3.11) 

for each A c F and A E '$3,. Especially, if A E QA, n vA2 and A, U A , c  F, then 

T ~ [ ~ C A ~ ( T A , ( ~ ) ) I  = T ~ [ ~ C A , ( ~ A ~ ( A ) ) I  (3.12) 

for each 6, which implies that cAL(nA,(A)) = c J T ~ ~ ( A ) ) .  
If another map 9: '$3 + P ( H )  satisfying (3.9) is given, then Tr(p*( 9 ( A )  - @'(A))) = 0, 

for each 6. This implies 9 ( A )  = 9'(A). 
To show (iii), let us observe that for each Hermitian operator IE L 1 ( H )  of the 

trace-class and finite set F G  T there exists a real-valued measure rp, on B ( n )  such that 

IPF(A) =Tr(.?a(N) (3.13) 

for each A E  '$3F This is a direct consequence of (3.10) and (3.11) and the fact that .? 
is a difference of positive_ operators from L ' ( H ) .  

Let us denote by O(f, F )  the family of Baire sets A c Cl for which (pF(A) does not 
depend on the choice of pF,for a givenf and F. clearly, OJf, F )  is a u-class. According 
to (3.13) one has '$3,cO(f, F) and therefore O F c  Q(f, F ) .  

Consequently, for each A E  O F ,  the formula 

+ A . F ( ~ ) = P F ( ~ )  (3.14) 

determines a real-valued functional +,,, on the Hermitian part of L ' ( H ) .  It is easy 
to see that 

I + A , F ( . ? ) ~  I4h  Tr[lfll (3.15) 

in other words, +A,F is continuous. Consequently, there exists the unique Hermitian 
operator &,(A) on H such that 

+A,F( .?)  =Tr(sF(A).?) for each Hermitian ]E L ' ( H ) .  (3.16) 

The map 8 , : O F + L ( H )  extends QF. Let us suppose that A = U i s N A i  where A; 
are mutually disjoint. Then for each Hermitian .?E L ' ( H )  one has 

= 1 Tr[8F(A;).?]. 
!EN 

This shows that 6,  is an ultraweakly cr-additive map. It is easy to see that 5,  is unique, 
as an ultraweakly u-additive extension of QF 

Let us now denote by ?@; the subfamily of 0, consisting of all A such that 
s F ( A ) e  P ( H ) .  Clearly, ?@,c'$3; and '$3: satisfy properties (3.7) and (3.8) because if 
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a sum of projectors is equal to 4 then they are mutually orthogonal. According to the 
definition of 'pF one has BF G 'pk. 

To prove (iv) let us consider the family Cl; of all A €  OF which satisfy SF(A) E (X)". 
Owing to the closeness of (X)" in the ultraweak operator topology, 0; is a v-class. 
Evidently, 'pF c 0;. Consequently, OF = 0;. 

Finally, property (vi) directly follows from the uniqueness of maps 
{$,=; FcT!  0 

The map 9 is, in general, not extendable on the 'global' U-class 0, generated by the 
whole '0. However, if a collection of numbers [l+jFl; F G  T) has an upper bound (this 
is equivalent to the continuity of + j )  then essentially the reasoning as in the above 
proof shows that S, admits the unique Hermitian ultraweak u-additive extension 
9:0+Y and that S ( % ) c P I H ) .  

To simplify discussion, let us suppose for a moment that +j is continuous. Then 
the formula 

&(A) = Tr(b&A)) (3.17) 

determines a real-valued measure on (a, 0) which extends ,up. It is easy to see that 
&(@) c_ [O, 11 for each quantum state p. Hence the restriction &I$ is interpretable as 
a 'probability measure'. (Because of the U-additivity, the restrictions of Lp on Boolean 
sub-v-algebras of 'p are ordinary probability measures.) However, for an arbitrary 
AECI it may happen that &(A)<O or &(A)> 1. In other words, contextual statistics 
(defined on (a, 'p)) is not, in general, extendable to a statistics on (a, 0). Of course, 
if 8 is positiw, then ,up are probability measures on (C l ,  Q). 

At the end of this section, we give a criterion for the possibility of reducing a 
quantum state p to an ordinary probabiiity measure on it. 

Proposition 3.4. The following conditions are equivalent: 
(i) dp,F = 1, for each finite set FE 1, 
(ii) There exists a probability measure p :  B ( n ) + [ O ,  11 such that 

(3.18) 

ProoJ If (i) holds then for each finite FE T there exists a Hermitian linear functional 
p; on C(n), of the unit norm, satisfying (3.2). On the other hand, it is well known 
that lpbl= p & ( l )  implies the positivity of p&. Consequently, each p& is a state on C(n). 
Due to the compactness of the set of states in the *-weak topology of C(n), there 
exists a subnet of the net F + p k  which converges (in the *-weak topology) to a state 
p'. It is easy to see that 

(3.19) 
Let us denote by p a probability measure on B ( 0 )  which, via the Riesz theorem, 
corresponds to pi. Equation (Xis) can then be rewritten in the form (3.18). 

P' (FA(a^) )  =p(a^) for each A E? and a  ̂E dom(A). 

Conversely, if (ii) holds, then the positive functional 

extends the maps p+jF, which implies dp,F = 1. U 
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4. Examples and critical remarks 

(i) The generalized concept of probability, presented in this paper, requires an addi- 
tional justification: every 'probability measure' pp : !# + [O, I] should be interpretable 
in terms of relative frequencies of occurrence. The possibility of such an interpretation 
is proven in [17]. Informally speaking, appropriate contextual statistics on the spaces 
{ak; k E N )  of sequences ensures the possibility for the relative-frequencies interpreta- 
tion of probabilities. (The same situation holds in classical statistics, where the same 
statistics on spaces of sequences ensures the relative-frequencies interpretation of 
probabilities.) 

However, in contrast to the classical case, probabilities of events from a given finite 
family F G @ are (unless F c 8,  for some A ET) generally not interpretable in terms 
of a single sequence. For example, if p violates Bell's inequalities then 'probability 
measures' pLp do not admit the single-sequence foundation. This is a direct consequence 
of various 'ensemble derivations' of Bell's inequalities (see for example [6,24,25]). 

Such extraordinary features are not in  contradiction with physical experience (see 
[29]): after a specification of the measurement context, contextual statistics is reduced 
to classical statistics. 

On the other hand, a more careful analysis shows [ 181 that an additional 'consistency 
condition' should be incorporated in the concept of subquantum reality. Roughly 
speaking, the condition forbids conceretizations of subquantum states of the system 
without context prespecifications (at least in situations where Bell's inequalities are 
violated). 

(ii) As already mentioned, probability measures po : !# + [0, I ]  are generally not 
extendable (as probability measures) on the v-field B(a). Moreover, certain correlated 
multi-particle states give perfect correlations which are not interpretable in terms of 
classical probability measures. This follows from the results of the work [20], in 
accordance with which there exist subquantum events A,, A*, A3, Q and correlated 
four-particle states p such that 

pP(Ai) = 1 and A, n A,n A, U A4= 0. (4.1 ) 

in ihe fiaiiie.w.ork of i-:assica; siaiisi&, ;i is 
worth noting that the possibility of pathogological situations (4.1) does not lead to 
contradictions with physical experience, because events Ai figuring in (4.1) always 
belong to different contexts. 

(iii) As an illustration of the formalism presented, we shall now examine an EPR-kke 
situation with distant measurements on a two-particle system. We shall illustrate all 

structure will be constructed first. The two-particle subquantum structure will then be 
obtained by simply taking the tensor product of the corresponding one-particle sub- 
quantum structures. 

At the one-particle level, classical probability can be used in the statistical founda- 
tion of quantum states. In particular, subquantum structures can be treated within the 

Let us consider a one-particle quantum system. To simplify things, we shall assume 
that the Hilbert space H of quantum states of the particle is finite-dimensional. This 
corresponds, for example, to restriction on internal degrees of freedom (such as spin). 
The algebra L of relevant quantum observables then consists of all linear operators in 
H, that is, L = L ( H ) .  Measurement contexts will be represented by maximal commuta- 

Ciedriy, sllc'n possibiiiiy is 

:---do-+ r+n-l AF1I.n nn"o+-.-+:n" :e th:r mnrmt- n v ~ m n l n  nnn.n=n;rl~ri.h"ii.ntnm L"'y"""', "'cy" "L L L l r  C Y I I a C L U I L I " , .  11. U L 1 . l  .+"..-L-Lu '"U1..p.u' C% "..'-y...L.-.- =..-'L..-...-... 

frzmc..o.k of UY ex!e!Eio.s [!4]. 
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tive *-subalgebras in X. Let T be the family of all contexts. Contexts A E T  :re 
i? a natural correspondence with orthogon$ ray-erojector decompositions I = 
PI + . . . + Pk, k = dim y. The correspondence { P,  , . . . , Pk} e A is given by the bicom- 
mutant. Operators { P I , .  . . , Pk}  are characterized as minimal non-trivial projectors 
of A. 

From the viewpoint of physical experience, the realization of a context A C T  is 
equivalent to the measurement of any observable a  ̂= a^+€ A which generates A. In 
this case a ^ =  a , P l + .  . .+akPk where (II , .  . . , ak are mutually different reaLnumbers. 

The elements of the spectrum X(A) are naturally labelled by projectors P , ,  . . . , Pk. 
More precisely, 

~ ( A ) = { ~ I . A , .  . . , ~ Y A }  

where characters o , , ~  : A + C are fixed by win( 4) = 8,. 
Let us consider the space 

n =  n X(A) 
A d  

endowed with a product topology (X(A) are endowed with discrete topology). We 
shall interpret the elements of Il as possible complete (suhquantum) states of the 
particle. In other words, it is assumed that the particle is, in each moment of time, in 
some state w E n, unknown from the point of view of quantum description. 

Further, it is assumed that each quantum observable a  ̂E L ( H ) ,  in each subquantum 
state w en, possesses a definite value, if the measurement context A 3 6 is specified. 
Let this value be defined by 

F A ( a ^ ) ( w )  = ?r,(O)(a^) 

where r , : n+X(A)  is the Ath coordinate projection. The map F A : A + C ( n )  is a 
*-monomorphism. 

Now, it is easy to see that for each quantum state JI E H, l # l =  1, there exists a 
probability measure p4 on the Baire u-field of n satisfying 

( # l a ^ l # ) =  1, F A ( ~ * ) ( w )  dp+(w) for each A E T  and â  E A. (4.2) 

Indeed, it is sufficient to take the product of X(A)-measures p4,A where 

/ h A ( { W < , A ) )  =(#I@il#) i e { l , .  . . , k ) .  

The formula (4.2) justfies the ignorance interpretation of quantum states. 
The space n, together with a family of maps FA:A+ C(n), gives an example of 

a causal subquantum model for the quantum particle described by H, X = L ( H )  and 
T. The model is contextual in the sense that for each w E one can find contexts 
A , B c T  and a quantum observable a ^ c A n B  such that F A ( a ^ ) ( w ) + F B ( d ) ( w ) .  As 
already mentioned, contextuality is a characteristic property of all consistent causal 
refinements of quantum mechanics (if it is assumed that all quantum observables are 
realizable subquantally). 

The necessity of contextuality naturally leads to the idea that ‘true physical quan- 
tities’ are not quantum observables, but quantum observables completed by contexts. 
This idea lies in the origin of the formalism of contextual extensions, from the viewpoint 
of which the complete description should be based, instead of X, on a finer algebra 
Z’ which ‘takes care’ of contextuality in a proper way. 
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In the situation under consideration, the simplest possibility for P'is the direct sum 

P'= C(II)@P. 

Let us define the 'forgetting homomorphism' Q :Z'+Z to be the projection on the 
second summand. Finally, let us define homomorphisms { b A :  A + P'; A ET} (contextual 
completions of quantum observables) by 

La(o^)=F,(a*)Oci. 

The triplet (Y, Q,{bA;AsT}) is an HV extension (in the sense of [14]) of (P,T). 
The elements of the space ll can be naturally viewed as characters of X'. 

We pass to the consideration of a two-particle system. In order to simplify the 
construction, we shall assume that particles are distinguishable. Let the ith particle 
( i  E {1,2}) be described, at a quantum level, by a Hilbert state-space H,, the quantum 
algebra Pi = L ( H ; )  and the family Ti of corresponding measurement contexts. The 
quantum description of the composite system is then based on the Hilbert space 
H = H , @ H 2  and the quantum algebra P = L ( H )  = Z,@L2. Concerning measurement 
contexts, we should now distinguish simple (one-particle) and composite (two-particle) 
ones. 

One-particle contexts are of the form A, = A l g i d 2  or A,= & @ A 2 ,  where A,eTi 
and id, is the identity in Pi.  (In the following, it will be assumed that Ai is identified 
with Ai, in a natural manner.) Two-particle contexts, corresponding to coincidence 
measurements, are then represented by sfts of the form A = {A,, A2] (with dom(A) = 
A, @A2 and Ai E Ti). Let us denote by T (T) the set of all simple (simple and composite) 
contexts. 

For the subquantum description of single particles, we shall use already constructed 
HV extensions (Z:, +<, { L < , ~ ;  A €Ti}). For the subquantum description of the composite 
system, it is natural to use the direct product of one-particle HV extensions. More 
precisely, let us consider the tensor product 

P'=P;@m; 

and homomorphisms $=&OQ2:P'+)x, bA,:A,+Z' and cA2:A2+P'. 
r,... " _.F .-A nore "j e I j an" 

b~,(a^i@idd= L I , A , ( ~ ^ , ) @ ~ :  bAi( id, @i2) = 1; 0 ~ ~ , ~ ~ ( 6 ~ )  
while 6, E A; and 1 I is the unity of PI. 

If A = {A,, A2] then the formula 

&A(a* ,@a*2)  = bA, (a^ l )bA2(a^2)  

gives the unique *-homomorphism bA:dom(A)+P' which extends b A , ( a ^ )  and ~ ~ ~ ( 6 ) .  
It is easy to see that the triplet ( X ' , + , { b A ;  AET}) is an LCHV extension of (Z,T). 

This fact justifies the possibility of interpreting the algebra X' as a base for the complete 
description of the composite system. In the framework of such a description, possible 
states of the system are given by characters of Z', which are represented by pain 
( w 1 , w 2 )  ( - w , @ o , )  where wjelI i .  Let l l= lT lx I12 .  For each a'eZ1 and w e n  the 
number w ( a ' )  can be interpreted as the value of U' in the state w. In particular, the 
value FA(a^) (w)  = w ( L ~ ( S ) )  of ~ ~ ( 2 )  in w can be interpreted as the value ofthe quantum 
observable a  ̂E dom(A) relative to the context A E ?  in the subquantum state w. 

It is worth noting that the constructed structure is contextual, since contextuality 
is already present at the one-particle level. 
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However, only local contextuality enters the game because the value of a given 
one-particle observable in a given composite context depends only on the corresponding 
one-particle component of the latter. At the formal level, in the framework of iden- 
tification C(n) = C(II,)@ CUI,), local contextuality is ensured by the following 
decomposability of corresponding *-monomorphisms FA : dom(A) -* C(n): 

F,?(h,@h2) = F,4j(a^,)OF”I(&) where A = {A;; A 2 ! ~  

From the subquantum viewpoint, quantum states I) E H = H, 0 H2 are interpretable 
as entities carrying information about the lack of knowledge of subquantum states 
w E II. Of course, for states violating Bell’s inequalities, such an interpretation is not 
possible within the framework of classical statistics. On the other hand, the lack-of- 
knowledge interpretation is always possible within the framework of ‘contextual statis- 
tics’, the domain of which is restricted to the family @ of quantally actualizable 
subquantum events. The family 13 is union of Boolean algebras 13, where A is a 
composite context. Every QUa consists precisely of subquantum events actualizable in 
the context A. Explicitly, atoms of @ A  are given by 

A < , ~ , A = ( ~ A ,  X ~ A J ’ ( w ~ , A , @ ~ ~ . A J  where A = { A , ,  A>}. 
A . .  - !?e events A<,j,A afe subquantum counterparts of quantum events Pi@Qj,, where 

{P, , . . . , Pk} and {Q,, . . . (k = dim H,, 1 =dim If2) and partitions of unity in H, 
and H2 corresponding to A, and A, respectively. Each quantum state +E H gives rise 
to a ‘probability measure’ pJ. : @ + [0,1] on (C l ,  13) such that 

PJ. ( A ,  j , ~ )  = (I), 0 G j )  I)). 
This formula gives a consistent contextual analogue of (4.2). It justifies the above- 
mentioned interpretation of quantum states. 

The construction presented can easily be generalized to the systems with three, or 
more, quantum particles. In the case when particles are identical (bosons or fermions), 
a technical difficulty arises because the composite Hilbert space (and quantum algebra) 
can no longer be obtained by taking tensor products of corresponding one-particle 
objects. However, such a diiiicuity can be overcome by aiiowing aii numbers ofpariicies 
in the game and, consequently, by fixing the quantum description on the corresponding 
Fock space. Because orthogonal decompositions of the one-particle Hilbert space 
(which appear in the consideration of mutually independent measurements ‘localized’ 
in some regions of physical space) naturally induce tensor decompositions of the Fock 
space (which allows us to build an LCHV extension, along the lines of the construction 
presented, by taking the tensor product of HV extensions associated with corresponding 
‘localized’ Fock spaces). A construction of the type presented can also be applied to 
infinitely extended lattice systems [18]. 

(iv) As already point out, the subquantum space Cl associated with an arbitrary 
LCHV extension (X, 4, { L ~ ;  A ET}) is compact, in the *-weak topology of (X‘)*. This 
natural topology on Il can be characterized as a minimal topology with respect to 
which all maps FA(a*) (where A E  T, h E A) are continuous. However, such a choice of 
topology implies, in the case when each context AET is generated by its projectors, 
that Cl is exrremally disconnected. For example, if .Z = L(H)  and dim(H) < m then il 
is necessarily of the above-mentioned kind. 

On the other hand, the necessity of an extremally disconnected topology can be 
avoided, by adopting a slight generalization of the formalism. For example, it is 
sufficient to  allow situations in which Z‘ is a von Neumann algebra and the space il 
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consists of characters of some C*-subalgebra E'S Z' everywhere ultraweakly dense in 
2 such that the evaluation map gf+ C(n) is extendable to a von Neumann algebra 
homomorphism Z'+ L"(n, p) ,  where P is a measure on and L"(n, p )  is the algebra 
of essentially bounded p-measurable functions on Q. (The algebra 3 need not be 
unital. Unitality of E' ensures compactness of n, otherwise we can say only that n is 
locally compact.) 

Such a modification of the formalism, conceptually inessential, has the consequence 
that maps FA(;) are no longer necessarily continuous (because ~ ~ ( 6 )  do not necessarily 
belong to E'). Further, FA(a^) can be left undefined on some negligible sets. 

As a result, 'nice' topological properties of 0 become possible. In particular, various 
concrete models having a smooth manifold as a subquantum space can be incorporated 
in this modified scheme. 

It is also worth noting that, in certain situations, some additional parameters enter 
the context specification. For example, in the model presented by Bell in [SI, contexts 
correspond to ordered partitions of unity. 

Let us briefly examine HV extensions based on one-particle Bohm-de Broglie type 
models [2, E]. The corresponding multiparticle structure can be Constructed, as in the 
example considered in the previous remark, by taking the direct product of one-particle 
extensions. 

In the framework of the Bohm-de Broglie theory, an actual physical situation is 
specified by a particle position, and a pilot-wave configuration; the latter corresponds 
to the quantum state of the system. Consequently, 

a= Q x C P ( H )  

where Q is the configuration manifold of the particle, H the Hilbert state space and 
CP( H )  the corresponding complex projective space. 

In the Bohm-de Broglie theory every quantum measurement is reducible to a 
measurement of the particle position. This means that, if a measurement context A is 
specified, every quantum observable a  ̂E A is represented by a measurable function 
fa (&)  on Q (so that fA:A+ Lm(Q) is a *-monomorphism). 

A rough scenario of the A-measurement is this. The measurement begins with the 
particle in some position q E Q, and with some initial point-wave configuration $. The 
evolution of the wave is determined by the Schrodinger equation (with Hamiltonian 
including interaction with the measurement apparatus). The evolution of the particle 
is determined by the corresponding ($-dependent) velocity flow. After a given time 
T > O ,  a position measurement is made. If the partick position is q ( 7 ) .  then, by 
definition, the result of the measurement of a  ̂ in context A is 

F A ( a * ) ( q ,  $ ) = f A ( q ( T ) ) .  

Starting from the space a, *-monomorphisms FA :A + Lm(n), the algebra 2 = L ( H )  
and the family T of contexts we can construct the corresponding extensions, as in the 
example previously considered. It is important to mention that the two-particle sub- 
quantum structure constructed in such a way differs essentially from the two-particle 
Bohm-de Broglie structure, which is highly non-local. 

Although the Bohm-de Broglie model, at the one-particle level, fits into the approach 
of this work, the background philosophies of the two approaches are different. In the 
Bohm-de Broglie model, measurement results are 'created' in the process of interaction 
between object (particle+wave) and measurement apparatus. On the other hand, one 
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of main ideas in the concept of HV and LCHV extension is that of 'pre-existing values' 
which are just 'read off in measurements. 

(v) The subquantum theory based on LCHV extensions is causal, in the sense that 
quantum ohservables possess definite values in subquantum states. However, we said 
nothing ahout dynamics. In fact, two general possibilities are left open. 

The first possibility is in a causal dynamics. From the algebraic viewpoint, it is 
l l l L " l 0 l  I" l l l l l Y U Y C r  >"-fin a uyrrrrrlluJ "la a urlc-palanlcrt;r giuuy U1 au,umulplllsnrs "1 

3, which then induces the evolution on IL and which is projectable, via 4:Z'+X, to 
the quantum evolution. 

The second possibility lies in an inherently stochastic dynamics. Nelson's stochastic 
mechanics [ l l ,  261 provide an important example of a subquantum structure of this 
kind: the particle evolution is assumed to be stochastic, described by an appropriate 

(vi) A large class of LcHv-type extensions can be obtained [IS] by reinterpreting 
deformation quantization constructions [ l ,  7,311 in terms of hidden variables. 

A general scheme is this. One starts with a symplectic (or Poisson) manifold IL and 
introduces an associative *-algebra structure on the space .dh of formal h-power series 
with coefficients belonging to C"(n). For this product, it is required that replacing 
h -* 0 gives a homomorphism cl: dh +. C"(IL) such that (correspondence principle) 

-"* .._n 1 *^ :"*-..A..-" "....L ~ 1 :-" ..:- - I_^ -..----. ~- ^ P  L:___ ̂F  

di'icsien precess in the ccxfignratk:: space Q. 

cl((ilh)[n, bl) = {CKa), cKb)l (4.3) 

where I , }  is the Poisson bracket on 0. The usual quantum formalism arises by taking 
a representation D (in which ,h becomes a positive number) of an appropriate 
(sufficiently rich) *-subalgebra dk of dh in a Hilbert space H. The elements of the 
uniform closure L of D ( 2 h )  play the role of 'quantum observahles'. 

Such a scheme can be linked with our subquantum one in the-following way. The 
space IL plays the role of the subquantum space, the algebra dh, completed in an 
appropriate way, becomes the C*-algebra of 'subquantum observables' and D extends 
to the 'forgetting homomorphism' 4 :I' + P. 

In order to illustrate this, let us examine a quantization of the algebra of functions 
of the 2n-dimensional torus 

T =  (SI)" x (SI)" where SI = { z  E C ;  IzI = l}. 

Let U :  S'+ C be the inclusion map and, for k E  {l, . . . , n } ,  let uk, uk be the compositions 
unk, unk+, where n are coordinate projections. We shall assume that T is endowed 
with the following symplectic structure: 

4- 1 d(arg(Ux))hd(arg(Ux)). 
k-1  

Let the space dh be endowed with the product m : dhOdh + dh given by (see [ 11) 

where m, is the product induced from C"(T) and X , ,  Y k  are canonical basis vector 
fields (dual to d(arg(uk)), d(arg(uk))). The space dh, with the product m, and *- 
involution induced from Cm( T )  (h*  = h )  becomes a *-algebra. It is easy to see that 
(4.3) holds. 

Let U,, V, be unitary elements in dh which correspond to uk. uk respectively and 
let 2h E Sa, be a *-subalgebra generated by elements U,, Vk and eih". For each (I z 0 
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and A = (A', . . . , A " )  E R "  we shall denote by DA,,, a representation of &?2h in a Hilbert 
space H = L 2 ( ( S ' ) " )  defined by 

4.. ( Uk ) IL = uk'b 
i h / Z  - m / Z '  4 , J e  ) - e  I 

[ D A , m ( V k ) + l ( z l , .  . . , z.)=el**'b(z,,. . . ,e-'"zk,. . . , z , , ) .  

Using the family {DA,*; A E R", a > 0) we can introduce a *-norm on 2,. by requiring 

If l=sup lD~. . ( f ) l .  
0.A 

We shall denote by Z' the completion of Jh with respect to this norm. 
The map cl: gh + C"( T )  is uniquely extendable to a surjective *-homomorphism 

cl : X'+ C ( T ) .  The elements of Tare interpretable as characters of X'. All representations 
DA,= are uniquely extendable from 2h to E'. Let us fix A and a such that e" is not a 
root of unity, and consider a representation Dk,- as a *-homomorphism @ : X ' + X .  
Here, 2 = Dk,-(2')  is a C* subalgebra in L ( H ) ,  interpretable as consisting of quantum 
observables. It is worth noting that Z is essentially the algebra of 'functions' on the 
quantum ton [ 1 2 ] .  

We pass on to the description of 'measurement contexts'. For each k E ( 1 , .  . , , n} 

generated by 4(UP,Vz).  It is easy to see that the spectrum w[$(UP,Va)] (coinciding 
with the spectrum X(A:,)  of Aiq) coincides with S'. Let T be the set of all such 
subalgebras. For A = Aiq, let k A  : A + X' he a *-homomorphism determined by 
L A ( + (  UP,Vz)) = e ' ( a - h ) N ' z U ~ V ~ .  Concerning composite contexts, let them be defined 
as sets of the form 

ZE.1 e!emec!*w "Prtnr ~ \r, n n \ F -I 7'\\<(0, a!! w e  Fha_!! &note by .& E 2 the C*-suba!gebr2 

A = ( A h , . . . , A ) , , , }  where 1s r, <. . .< 5 s  n. 

Then, the triplet (X', + , ( L ~ ;  A E T } )  is an LCHV extension of (Z,T). 
(vii) In various relevant situations, the system considered possesses, at the quantum 

level, some symmetry. It is interesting to ask whether this symmetry is preserved during 
the passage from the quantum to the subquantum level of description. 

By definition, an LCHV extension (Z', 4, ( L A ;  A E T } )  of (Z, T )  is G-covariant iff there 
exists an action ac : G + Aut(X') of G by automorphisms of X' such that 

Let G be I gmcp of automorphisrr?s of 2 SEC!! !hat ftmi!ies T znd T Z K  Ginvilean! 

Lg(A)giA aG(g)kA for each A E T  and g E G. (4.4) 

Of course, in a general case the extension (X',4, { L ~ ;  A E T ) )  will not be G-covariant. 
But if it is, then, owing to (4.4) and (2.1; iv), the action aG is unique. It is easy to see 
that (Lc(Z,T), 4, (CA; A E T } )  is always G-covariant. 

If ( X ' ,  4, ( L ~ ;  A E T } )  is G-covariant, then the action aG naturally induces an action 
do of G by automorphisms of the subquantum space (d,(g): o+oa, (g- ' ) ) .  AI1 
canonically associated subquantum entities are G-covariant in a natural manner. If, 
in addition, a representation D of Z in a Hilbert space H is given, together with an 
unitary representation U of G in the same space, such that 

Dg = u ( g ) D (  )U'(g) for each g E G 

then the 'interpreter maps' figuring in proposition 3.3 are also G-covariant, in a natural 
manner. 

(viii) There exists a certain similarity between classical mechanics and subquantum 
mechanics considered in this study. The similarity may be twofold: as first, both 
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structures include the concept of complete states, in which all physical quantities 
describing the system have definite values. Thus, an analogy between the subquantum 
space n and the phase space in classical mechanics, naturally emerges. 

Secondly, we can speak about dynamical similarity between classical and subquan- 
tum mechanics. Such a similarity is realized in those subquantum theories in which 
subquantum space has a symplectic manifold structure, and dynamics is of the 
Hamiltonian form [la, 181. 

In the framework of the above-mentioned subquantum-classical analogies, quan- 
tum theory appears (because of the ignorance interpretation of quantum states) as 
something like classical statistical mechanics on the subquantum space. 

However, in contrast to the relation 

classical mechanics c) classical statistical mechanics 

the relation 

subquantum mechanics c) quantum mechanics 

shows contextual features. 
Another example of a phenomenon not appearing in the classical world is existence 

of properties of the system which are not actualizable jointly. This can he understood 
as a manifestation of complementarity. At a formal level, complementarity is reflected 
in the non-commutativity of the algebra of observables. Since complementarity is a 
fundamental characteristic of the quantum world, every 'deeper' theory extending 
quantum mechanics should, in some sense, preserve it. From the viewpoint of this 
study, complete description of physical reality should be based on appropriate 
(necessarily non-commutative) extensions of quantum algebras. 

Approximativity of quantum description is reflected in the fact that the quantum 
algebra X can be obtained from the subquantum algebra X' by factorizing through the 
'ideal of hidden variables' hv(Z') = ker(4). Clearly, the replacement Z + E' preserves 
the information about complementary observables. 

Not all extensions X' of the quantum algebra X are subquantally relevant: among 
other properties, the aigebra 2': shouid possess suiiicientiy many characters, because 
they form the subquantum space n. 

The description of the system in terms of i2 is understandable as a 'classical type' 
approximation of the complete description. The passage from the %-description to 
the classical a-description is obtained by factorizing through the ideal J = com(E'). 

The quantum algebra X is not canonically determined by E' (in contrast to fl and 

admitting dispersion-free states, all the information about X is contained in J, because 
in this case +( J) = com(Z) = E. 

Let us assume that fl and J are given. An important problem naturally arises: how 
do we compute all possible algebras X' having fl as a subquantum space and satisfying 
J = com(Z')? 

tions' Z (equivalently, all possible ideal hv(2)). 
From the mathematical viewpoint, a framework for problems of the above- 

mentioned kind is, essentially, the theory of Brown et a1 [lo]. This connection opens 
of the possibility of applying non-commutative-geometric [ 121 methods in subquantum 
mechanics. 

;j, tiowever, in lhe Case when ihe is 'puie~y q-uanium', in the sense of 

I. :- -I-- "_"-. x-2, :- ,.:..-- 6- ~ . . . . ~ t : ~ ~ t .  "11 ..Ao&hl.. Ln..ont.,m onlnrr:.rn 
I,  15 arau U, I l l K i l S D L ,  11 L, 13 s L " r L l ,  I" "L'C""5-L' ".. PV'*.".' Y"'..L'V... "YP.V"..1LP- 
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